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Abstract
In this paper, the quantum Hamilton–Jacobi theory based on the position-
dependent mass model is studied. Two effective mass functions having
different singularity structures are used to examine the Morse and Pöschl–
Teller potentials. The residue method is used to obtain the solutions of the
quantum effective mass- Hamilton–Jacobi equation. Further, it is shown that the
eigenstates of the generalized non-Hermitian Swanson Hamiltonian for Morse
and Pöschl–Teller potentials can be obtained by using the Riccati equation
without solving a differential equation.

PACS numbers: 03.65.−w, 03.65.Ge

1. Introduction

Quantum Hamilton–Jacobi (QHJ) theory has always attracted much attention in both non-
relativistic and relativistic quantum mechanics. An interesting work on the quantization of
the bosonic chiral Schwinger model is studied within HJ context [1]. QHJ theory, which is
a generalization of classical Hamilton–Jacobi formulation, is one of the nine formulations of
quantum mechanics based on transformation theory [2]. A fundamental work for obtaining
the eigenfunctions of a quantum system with using the QHJ theory may be found in [3].
Furthermore, there has been an increased research interest in quantum trajectories in the
complex plane [4, 5]. The study of the De Broglie–Bohm approach is formulated in a time-
dependent domain [6]. The QHJ formalism was first developed by Leacock and Padgett in
1983 [7]. Exact and quasi-exact solutions of a group of soluble potentials are also studied
[8] as well as the supersymmetric quantum mechanics and shape invariance approach [9].
Moreover, Sanz et al showed that the chemical reactions are analyzed within a generalized HJ
framework [10]. Some detailed and interesting work on extensions of analytical mechanics
to the complex plane can be found in [11]. In [12], the spectrum for the class of potentials
within QHJ theory is obtained.
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On the other hand, the position-dependent mass model has been a subject of considerable
interest in recent years [13–22] following the work of Von Roos and Levy-Leblond [17, 20]
that claims to describe some physical phenomena. The importance of this kind of Hamiltonian
arises from the motion of electrons and holes in semiconductors that can be described by them.
In this model, the mass is taken as the effective mass of the particle, which depends on the
material [17]. Von Roos showed that Hamiltonians with position-dependent mass are not
Galilean invariant within the extension of Bargmann’s theorem [20]. Later, Levy-Leblond
showed that Galilean invariance can be used to obtain the Hamiltonian of an electron with
spatially dependent mass, a model of a heterojunction is proposed in [17].

Recently, much attention has been devoted to investigate the properties of non-Hermitian
Hamiltonians in theoretical physics [23, 24]. A wide class of PT symmetric, non-Hermitian
Hamiltonians provide entirely real spectra [25]. For recent developments please see [26–29].
Mostafazadeh has investigated the larger class of Hamiltonian models known as pseudo-
Hermitian, defined by the relation H † = ηHη−1, for a Hermitian operator η [30–32]. Various
papers appeared on this topic [33–36]. As a non-Hermitian and PT -symmetric Hamiltonian
model, some properties of the Swanson Hamiltonian are studied in the literature [23, 28,
33, 36].

In the present paper, as a first study of the QHJ equation introduced in a mass-dependent
form that can be a generalization of the QHJ equation, exponential and hyperbolic type
effective mass models are considered and the transformed equation, which is a Riccati type, is
mass dependent. The effective mass-QHJ equation is solved for the effective potentials using
a Laurent series. Moreover, a pseudo-Hermitian Hamiltonian model is connected with the
QHJ equation and two types of effective potentials are generated.

2. Preliminaries for two approaches

In this section we shall introduce a brief summary of the QHJ theory and the effective mass
problem.

2.1. Quantum Hamilton–Jacobi theory

In [7], the authors considered a particle moving in one dimension under the influence of
a potential U(x). Classical transformation equations p = ∂W

∂x
, Q = ∂W

∂P
are used in the

Schrödinger representation which is Ĥ = H(x̂, p̂) = p̂2 + U(x̂) where x̂, p̂ are linear
coordinate and momentum operators. Then, the QHJ equation is stated [7] as

h̄

i

∂2W(x,E)

∂x2
+

(
∂W(x,E)

∂x

)2

= E − U(x),

where W (x, E) is the generating function. If the quantum momentum function p is defined by
p(x,E) = ∂W(x,E)/∂x, then the QHJ equation is defined by

p2 − ih̄p′ − (E − U(x)) = 0. (1)

There can be a transition between the Schrödinger and the QHJ equations via the wavefunction
defined by ψ(x,E) = e

i
h̄
W(x,E) [7], which satisfies the physical boundary conditions.

Equation (1) is a nonlinear equation and it has two solutions. But we have to look for
a physically acceptable solution. The appropriate boundary condition was proposed as
p(x,E) →h̄→0 pcl(x, E) in Leacock and Padgett’s paper; this is only for simple potentials,
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because pcl(x, E) = √
E − U(x) may have several branch points. The quantum action

variable is defined [7] by

J (E) = 1

2π

∮
C

p(x,E) dx = nh̄, (2)

which connects the eigenvalue J to the energy E. Here, C is the closed contour which encloses
the cut of pcl(x, E) between x1 and x2. Poles of p(x, E) are enclosed by the contour C; thus
J (E) = nh̄ [7], as is seen from the quantum action variable and boundary condition that
p(x, E) has poles of residue −ih̄ on the real axis. The details of the model and calculations
for obtaining the spectrum will not be given in this paper; however, the reader can look at
[3, 7, 8] for more details.

2.2. Effective mass problem

Let us start with the general Hermitian effective mass Hamiltonian which was suggested first
by von Roos [20]:

H = 1
4 (mα(x) pmβ(x) pmγ (x) + mγ (x) pmβ(x) pmα(x)) + V (x), (3)

with the constraint α + β + γ = −1 on the parameters, and m(x) being the position-dependent
effective mass. One can express this Hamiltonian in various ways, depending on the choice
of the parameters. Thus, various special cases of the kinetic energy operator can be given [15]
by

T̂ = 1

4

(
1

m
p2 + p2 1

m

)
(4)

T̂ = 1

2

(
p

1

m
p
)

(5)

T̂ = 1

2

(
1√
m

p2 1√
m

)
. (6)

In this work, we will keep the same general form of the Hamiltonian. Thus, the one-
dimensional effective PDM Hamiltonian is given [20] by

Heff = − 1

M(x)

d2

dx2
+

M ′(x)

M2(x)

d

dx
+ Veff(x), (7)

where

Veff(x) = V (x) +
1

2
(β + 1)

M ′′

M2
− [α(α + β + 1) + β + 1]

(M ′)2

M3
, (8)

α, β are parameters as written before and primes stand for the derivatives with respect to x.
Note that we use the dimensionless form M(x) of m(x) = m0M(x) and h̄ = 2m0 = 1. Now
we can introduce the corresponding eigenvalue equation for (7) as

− 1

M(x)

ϕ′′(x)

ϕ(x)
+

M ′(x)

M2(x)

ϕ′(x)

ϕ(x)
+ (Veff(x) − ε) = 0, (9)

where ε and ϕ(x) are the eigenvalues and eigenfunctions of the Hamiltonian (3). Our task is
now to adapt (9) to QJH theory.

3
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3. The quantum effective mass-Hamilton–Jacobi model

Now we make a new transformation as p̃(x, ε) = −i ϕ′
ϕ

in (9). Hence we have

−ip̃′(x, ε) + p̃2(x, ε) + i
M ′(x)

M(x)
p̃(x, ε) + M(x)[Veff(x) − ε] = 0 (10)

that will be known as the quantum effective mass(QEM)-Hamilton–Jacobi(HJ) equation. We
shall use p̃ for the quantum effective mass momentum function. It is obvious that the QEM-HJ
equation can be transformed into the QHJ equation by using

ψ(x) = 1√
M(x)

exp

(
i
∫

p̃(x, ε) dx

)
, (11)

where ϕ(x) = √
M(x)ψ(x). And we also point out that ψ corresponds to the eigenfunctions

of the Schrödinger equation. Thus, the relation between two quantum momentum functions is

p̃ = −i
M ′(x)

2M(x)
+ p. (12)

Introducing a general form for p̃:

p̃′ = a(x) + b(x)p̃ + c(x)p̃2, (13)

which has the same form as (10), and using

p̃(x) = 1

c(x)
υ(x) − b(x)

2c(x)
− c′(x)

2c2(x)
(14)

in (13), we have then

υ ′(x) − υ2(x) = G(x), (15)

where G(x) is given by

G(x) = ac − b2

4
+

b′

2
− bc′

2c
− 3

4

c′2

c2
+

c′′

2c
, (16)

and primes denote derivatives with respect to x. If we compare (15), (16), (13) with (10), we
can express a, b, c in terms of the physical quantities:

a(x) = −iM(x)(Veff(x) − ε)

b(x) = M ′(x)

M(x)

c = −i.

(17)

Then, G(x) can be written as

G(x) = −4M3(x)(Veff(x) − ε) + 3M ′2(x) − 2M(x)M ′′(x)

4M2(x)
. (18)

3.1. A short discussion on the multiplicities

G(x) may have the number of poles because of the mass and effective potentials. In the
previous works, there were not any comments on the multiplicity of the poles [3, 8, 9, 12]. In
terms of the multiplicities of the poles of G(x), the maximum number of distinct meromorphic
solutions can be discussed.

Theorem 1. If G(x) has at least one simple pole, then (15) admits at most one meromorphic
solution.

4
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Corollary 1. Let G(x) be a meromorphic function; then it has at least one pole. If (15) has
two distinct meromorphic solutions, then all poles of G(x) are of even multiplicity.

Proof of Theorem. Let υ be a meromorphic solution of (15) and x0 be a simple pole of G(x).
Obviously, the residue of υ at x0 is −1. Thus, there must be a neighborhood of x0, which is D,
such that the function

ξ := (x − x0) e− ∫ x

x0
χ dx ′

(19)

and the function χ are analytic in a neighborhood of x0, and χ satisfies χ = υ + 1
x−x0

.
Henceforth, ξ satisfies the well-known differential equation

ξ ′′ + G(x)ξ = 0. (20)

Suppose that the theorem is false and (15) has two distinct meromorphic solutions υ1, υ2.
Let ξ1, ξ2 and χ1, χ2 satisfy (20) and (19) on a neighborhood S. If ξ1 and ξ2 are linearly
independent, then d

dx

(
ξ1

dξ2

dx
− ξ2

dξ1

dx

) = 0. From this point of view, there is a function f and
a constant c such that f := ξ2

ξ1
, f ′ := c

ξ 2
1
; then x0 is a simple pole of f . By using (19), f

becomes analytic at x0. And there is a contradiction. �

Here, theorem 6.1 in [37] is followed to introduce the theorem given above. In fact,
previous works include even multiplicity. But, there may also be simple poles depending on
the mass function. We will see this in the example of the Pöschl–Teller potential, discussed
below.

3.1.1. Singular mass with simple pole: x0 = ikπ , k = 0, 1, 2, 3, . . .. We now discuss the
QEM-HJ model for M(x) = 1

sinh x
. We introduce

V (x) = V1 coth x + V2 + V3 sinh x; (21)

then we obtain G(x) and Veff as

−G(x) = V1 coth x csc hx −
(

α(α + β + 1) +
1

4

)
csc h2x +

V2 − ε

sinh x
+ V3 +

β + 1

2
+

1

4

Veff(x) = V1 coth x + V2 +

[
V3 +

β + 1

2
+ (β + 1) csc h2x

− (α(α + β + 1) + β + 1) coth2 x

]
sinh x.

(22)

Thus, a Riccati equation can be obtained by the appropriate transformations (given above) as

υ ′ − υ2 − V1 coth x csc hx +

(
α(α + β + 1) +

1

4

)
csc h2x − V2 − ε

sinh x
− V3 − β + 1

2
− 1

4
= 0.

(23)

There is a simple pole coming from the coefficient of V2 − ε in the above equation. This
equation is solvable for V2 = ε as a special case. On the other hand, one can expand G(x) in
a Laurent series as

G(x) = k1 + k2

x2
+

k3

x
+ · · · , (24)

where k1 = −V1, k2 = (α(α + β + 1) + 1
4 and k3 = ε − V2. There is one simple pole and also

even multiplicity. We use the mappings, υ = −
√

y2 − 1
(
ζ(y) − y

2(y2−1)

)
, y = cosh x, in (23)

5
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and we find

ζ ′ + ζ 2 − 1

2(y2 − 1)
+

3y2

4(y2 − 1)2
+

1

(y2 − 1)

×
(

V1y

(y2 − 1)
− α(α + β + 1)

(y2 − 1)
+ V3 +

1

4
+

β + 1

2

)
= 0. (25)

Now we have to seek solutions to the above equation. The first task is to expand ζ in Laurent
series and to find the residues. Then, ζ is expanded in a Laurent series as

ζ = b1

y − 1
+ p0 + p1(y − 1) + · · · (26)

and the residue b1 at y = 1 can be obtained:

b1|y=1 = 1
2

(
1 ±

√
V1 − α(α + β + 1) + 1

)
. (27)

At y = −1, the residue is

b1|y=−1 = 1
2

(
1 ±

√
−V1 − α(α + β + 1) + 1

)
. (28)

Because we cancel the term k3, there are two solutions for each value of the residue, as
mentioned in the theorem. But, because of the integrability condition, we will choose one of
them. Now, F ′(y) = Q(y)F (y) will be used in

ζ = b1|y=1

y − 1
+

b1|y=−1

y + 1
+ Q(y) + h, (29)

where h is a constant because of Liouville’s theorem [38]. This equation will be put in (25) to
obtain the spectrum. The constant h = 0 can be obtained here. In the limit of y → ∞, Q(y)

behaves as Q(y) → n
y

and Q′ + Q2 → n(n−1)

y2 . From the coefficient of y−2, one obtains

2b1|y=1b1|y=−1 + 2n(b1|y=−1 + b1|y=1) + n(n − 1) + 3
8 − V3 − α(α + β + 1) = 0. (30)

Hence, from (30) we have

V3 = γ 2 −
(

1
2 (−1 +

√
−V1 − α(α + β + 1) + 1 +

√
V1 − α(α + β + 1) + 1) − n

)2
, (31)

where

γ = −β + 1

2
− 1

4
+

1

4

( − 1 +
√

−V1 − α(α + β + 1) + 1 +
√

V1 − α(α + β + 1) + 1
)2

. (32)

We note that the negative sign is used for the residues because of the integrability condition.
Finally we can give the solutions by using (26)–(28) and ϕ = ei

∫
p̃dx :

ψn(y) ∝ (y − 1)a1− 1
2 (y + 1)a2− 1

2 P
(2a1− 3

2 ,−2a2− 3
2 )

n (y) (33)

and

ϕn(y) ∝ (y − 1)a1− 3
4 (y + 1)a2− 3

4 P
(2a1− 3

2 ,−2a2− 3
2 )

n (y), (34)

where P λ1,λ2
n (y) are Jacobi polynomials and the constants are given by

a1 = 1
4

(
1 − 2

√
−V1 − α(α + β + 1) + 1 +

√
V1 − α(α + β + 1) + 1

)
a2 = 1

4

( − 1 + 2
√

V1 − α(α + β + 1) + 1 +
√

V1 − α(α + β + 1) + 1
)
.

(35)

Pöschl–Teller potential is generally given by [39]

U(x) = A2 + (B2 + A2 + A) csc h2x − B(2A + 1) coth x csc hx. (36)

Thus, if we compare G(x) in (22) with (36), we can obtain the constants A and B in terms of
the constants of (21):

A = 1
2

( − 1 +
√

−V1 − α(α + β + 1) + 1 +
√

V1 − α(α + β + 1) + 1
)

B = 1
2

(√
V1 − α(α + β + 1) + 1 −

√
−V1 − α(α + β + 1) + 1

)
.

(37)

6



J. Phys. A: Math. Theor. 43 (2010) 095305 Ö Yeşiltaş

3.1.2. Exponential mass with the pole: x0 = −∞. We will use the effective mass
M(x) = e−2x in this case. In [13], the authors introduced V (x) as

V (x) = V0 e2x − B(2A + 1) ex (38)

and G(x) and Veff have the forms

G(x) = ε e−2x + B(2A + 1) e−x − V0 + 2(β + 1) + 4α(α + β + 1) + 1

Veff = (V0 − 2(β + 1) − 4α(α + β + 1)) e2x − B(2A + 1) ex.
(39)

If we use the mapping p̃ = i(1 + υ), υ = y
(
ζ − 1

2y

)
given in (14) and (17) and y = e−x , we

have

ζ ′ + ζ 2 +
1

4y2
+

1

y2
(εy2 + B(2A + 1)y − V0 + C) = 0, (40)

where C = 2(β + 1) + 4α(α + β + 1) − 1. Now we expand ζ in a Laurent series as

ζ = b1

y
+ p0 + p1y + · · · (41)

and the residue b1 becomes b1 = 1
2 (1 ± 2

√|V0 − C|). We now discuss the residue at y = ∞,
on the extended complex plane. Using y = 1

t
in (40) and expanding ζ = B0 + B1t + B2t

2 + · · ·
one obtains the residue B1 = −B(1+2A)

2B0
, B0 = −√−ε. The coefficient of y−1 for large y gives

V0 = 2(β + 1) + 4α(α + β + 1) − 1 + (A − n)2, (42)

where ε = −B2 [13]. The solutions can be obtained following the same way as it is discussed
before; if ζ is written as ζ = b1

y
+ Q(y) + h, and F ′(y) = Q(y)F (y) is used, then the constant

h = − 1
2 can be obtained. Using (40) and the residue b1 one obtains

ϕn(y) ∝ yA−n+1 e− 1
2 yL2(A−n)

n (2By), (43)

which is consistent with [13].

4. Pseudo-Hermitian Hamiltonian model connected with the QEM-HJ approach

Suppose that H is not a Hermitian Hamiltonian. Then, η-pseudo-Hermiticity of H is equivalent
to the condition given by [30]

H † = ηHη−1, (44)

where η is a linear, invertible operator. The metric operator η is not unique for a pseudo-
Hermitian operator H. There exists a mapping from the non-Hermitian H to its Hermitian
counterpart h, through a similarity transformation h = ρHρ−1; here H, a differential operator,
acts in a complex function space and the mapping function is positive definite ρ = √

η [30]. A
non-Hermitian, PT symmetric Hamiltonian model is considered by Swanson and it is given
[36] as

H = ω
(
a†a + 1

2

)
+ αa2 + βa†2, (45)

where a, a† are the generalized creation and annihilation operators,

a = A(x)
d

dx
+ B(x), a† = −A(x)

d

dx
+ B(x) − dA(x)

dx

and ω, α, β are real, positive constants. In [24], the more general form of Swanson Hamiltonian
is introduced as

H = ω
(
a†a + 1

2

)
+ αa2 + βa†2 + γ a + δa†, (46)

7
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which can be written in a differential operator form [24]:

H = −ω̄
d

dx
A2(x)

d

dx
+ b1(x)

d

dx
+ c2(x), (47)

where ω̄ = ω − α − β,

b1(x) = (α − β)A(x)(2B(x) − A′(x)) + (γ − δ)A(x) (48)

and

c2(x) = (ω + α + β)B2(x) − (ω + 2β)A′(x)B(x) − (ω − α + β)A(x)B ′(x)

+ β(A(x)A′′(x) + A′2(x)) + (γ + δ)B(x) − δA′(x) +
ω

2
. (49)

Let � and E be the eigenfunctions and the eigenvalues of (47), i.e.

H� = E�. (50)

If p is introduced by

p = −i
� ′

�
(51)

and if it is used in (50), then it yields

p′(x) = −ip2(x) +
b1(x) − 2ω̄A(x)A′(x)

ω̄A2(x)
p(x) − i

c2(x) − E
ω̄A2(x)

. (52)

Comparing the above equation with (13), we obtain

a(x) = −i
c2 − E
ω̄A(x)2

b(x) = b1 − 2ω̄A(x)A′(x)

ω̄A(x)2

c = −i.

(53)

Meanwhile, it is obvious that (52) is not any type of the QHJ equation that is discussed in
sections 1 and 2, because (47) is not Hermitian, and H� = E� is not a regular Sturm–
Liouville type differential equation. But one can find a Hermitian counterpart of (47) by using
a convenient metric [24]. But here, we can find a Riccati-type equation which corresponds to
a QEM-HJ equation. We then use

p(x) = iυ(x) − i
b1(x) − 2ω̄A(x)A′(x)

2ω̄A2(x)
(54)

in order to transform (52) into (15). Thus, G(x) can be obtained as

G(x) = −A′′(x)

A(x)
+

b′
1(x)

2ω̄A2(x)
− c2(x) − E

ω̄A2(x)
− b2

1(x)

4ω̄2A4(x)
. (55)

We note again that the primes in equations given above denote derivatives with respect to x.
Hence, we can introduce �(x) as

�(x) = e
∫ x dx ′ b1(x′)

2ω̄A(x′)2 φ(x), (56)

where φ(x) = e− ∫ x dx ′(υ(x ′)+ A′(x′)
A(x′) ). On the other hand, if we follow a standard procedure

[24, 34, 35], (50) can be transformed into an equivalent Hermitian form by means of the
similarity transformation [30]:

h = ρHρ−1, (57)

8
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where the mapping function reads [24, 34, 35]

ρ = exp

(
− 1

2ω̄

∫
dx

b1(x)

A2(x)

)
(58)

such that η = ρ2. This transformation leads to

h = −ω̄
d

dx
A2(x)

d

dx
+ Veff(x), (59)

where [24]

Veff =
(

(α − β)2

ω̄
+ ω̄ + 2(α + β)

)
B(x)(B(x) − A′(x))

− (ω̄ + α + β)A(x)B(x)′ +
α + β

2
A(x)A(x)′′ +

1

4

(
(α − β)2

ω̄
+ 2(α + β)

)
A(x)′2

+

(
(α − β)(γ − δ)

ω̄
+ γ + δ

) (
B(x) − A(x)′

2

)
+

(γ − δ)2

4ω̄
+

ω̄ + α + β

2
. (60)

4.1. Pöschl–Teller and Morse potentials in the Swanson model

Now we will study the effective potentials in the Swanson model. If we compare (59) and (7)
it is seen that

A(x) =
√

1

ω̄M(x)
. (61)

Let us discuss two different types of A(x) function. If we can give an ansatz for A(x) and
B(x), we may be able to obtain some effective potential models. In this manner, one can
obtain the residues and all solutions in terms of the parameters ω, α, β.

(i) Firstly, we take γ = δ = 0 for convenience. If we choose

A(x) =
√

sinh x

ω̄
, B(x) = A(x)−1,

then, using (55), we obtain

G(x) = −α2 + (β − 2ω)2 − 2α(β + 2ω)

16ω̄2
− ω − 2E

2ω̄
csc hx

+
ω(α + β) − 4αβ

2ω̄2
coth x csc hx −

(
(α − β)2

16ω̄2
+ ω2 − 4αβ − 1

4

)
csc h2x (62)

and from (60) we have

Veff(x) = −ω(α + β) + 4αβ

2ω̄
coth x +

(α − β)2

16ω̄2
coth x csc hx

+ (ω2 − 4αβ) csc hx +
α + β

4ω̄
sinh x. (63)

The QEM-HJ equation is solvable for ω = 2E . Comparing (62), (15) and (36) we get

A = − (α + β)(α + β − 3ω) + ω2 + 4αβ

2α(α + β − ω)2

B = − (α + β)2 − ω(α + β)(α + 3) + ω2 + 4(α − 1)αβ

2α(α + β − ω)2
.

(64)
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V1, V2 and V3, the parameters of (38), can also be written in terms of these parameters as

V1 = −ω(α + β) − 4αβ

2ω̄

V2 = ω

V3 = α2 + (β − 2ω)2 − 2α(β + 2ω)

16ω̄2
+

1

4
+

β̃ + 1

2
ε = 2E,

(65)

where β̃ is used instead of β that is the parameter given in the von Roos Hamiltonian.
The solution � which is defined in (56) is then given by

�n(x) ∝ (cosh x − 1)
B−A

2 − (α−β)(1−4ω̄)

8ω̄ (cosh x + 1)−
B+A

2 − (α−β)(1+4ω̄)

8ω̄ P
(B−A− 1

2 ,−B−A− 1
2 )

n (cosh x),

(66)

where the constants A and B are given by (64) and 0 � x � ∞. In this case we note that
the metric is given by

η = (sinh x)
α−β

2ω̄

(
tanh

x

2

)−2(α−β)

(67)

such that the Hermitian inner product 〈〈�(x)|�(x)〉〉η = 〈�(x)|η|�(x)〉 can be used for
the normalization. The constraints for the parameters are given by B − A >

(α−β)(1−4ω̄)

8ω̄

which is satisfied by the relations A and B in (64).
(ii) Next we introduce A(x) and B(x) as

A(x) := ex

√
ω̄

=: B(x).

In this case we obtain G(x) as

G(x) = − (α − β)2

4ω̄2
+

2(βγ + αδ) − (δ + γ )ω

2ω̄3/2
e−x +

(
−E +

ω

2
− (γ − δ)2

4ω̄

)
e−2x (68)

and the effective potential is given by

Veff = (γ − δ)2 + 2ωω̄

4ω̄
+

(
(α−β)(γ−δ)

ω̄

)
+ γ + δ

2
√

ω̄
ex +

(
−1 +

(α − β)2

4ω̄2

)
e2x. (69)

By comparing (68) and (39), we obtain

A = −1

2
+

2(βγ + αδ) − (δ + γ )

4ω̄
3
2

B−1

B =
(
E − ω

2
+

(γ − δ)2

4ω̄

) 1
2

ε = E

(70)

and

V0 = 2(β̃ + 1) + 4α̃(α̃ + β̃ + 1) − 1 +

(
α − β

2ω̄

)2

,
α − β

2ω̄
= A − n, (71)

where α̃, β̃ are the constants defined in the von Roos Hamiltonian instead of α, β. And the
complete solutions are given by

�n ∝ (e−x)A−n− α−β

2ω̄ e(−B+ δ−γ

2
√

ω̄
)e−x

L2(A−n)
n (2B e−x). (72)
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In this case, η can be given as

η = e− α−β

ω̄
x+ γ−δ√

ω̄
e−x

, (73)

which can be used in the Hermitian inner product 〈〈�(x)|�(x)〉〉η = 〈�(x)|η|�(x)〉 to
obtain normalized wavefunctions. We note that the boundary conditions imply A > n and
−∞ � x � ∞.

5. Conclusions

In this work we have studied the generalized QHJ equation within the context of effective mass
approach. We have used p̃ instead of p as an effective mass-quantum momentum function
which can also be used to obtain the solutions of a position-dependent Schrödinger equation,
without solving it. We have obtained the solutions of the QEM-HJ equation for two different
types of mass function. It is seen that if there is an even multiplicity of the poles, there are at
most two solutions but only one of them is acceptable by reason of the physical conditions.
On the other hand, the mass-dependent QHJ equation differs from the regular QHJ equation
because of the pole contribution of the mass term. This can be observed in the Pöschl–Teller
example such that the coefficient of the single pole, k3, is taken as zero. But, in the example
of the exponential mass, the pole structure of G(x) does not lead to such a restriction.

We have emphasized that the transformation in (14) that maps the QEM-HJ equation
into a normal Riccati equation is also used for the Swanson model. This also means that an
eigenvalue equation of the non-Hermitian system can be mapped into a Hermitian one by (14)
which is seen to be in Riccati equation form. We have also shown that, using certain choices
of A(x) and B(x) leads to some effective potentials generated from the Hermitian counterpart
of the Swanson Hamiltonian. The solutions of (52) are obtained for the Pöschl–Teller and
Morse potential cases without solving the QEM-HJ equation. To obtain the normalized
wavefunctions, we use the η- Hermiticity condition for (66) and (72). On the other hand, it
is clear that an extensive class of soluble potentials can be classified according to choices of
A(x), B(x). It would be an interesting problem to discuss a relativistic quantum stationary
Hamilton–Jacobi equation within effective mass approach.
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